Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460634

RESUMO

The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacinação , DNA , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465928

RESUMO

Cationic nanostructures have emerged as an adjuvant and antigen delivery system that enhances dendritic cell maturation, ROS generation, and antigen uptake and then promotes antigen-specific immune responses. In recent years, retinoic acid (RA) has received increasing attention due to its effect in activating the mucosal immune response; however, in order to use RA as a mucosal adjuvant, it is necessary to solve the problem of its dissolution, loading, and delivery. Here, we describe a cationic nanoemulsion-encapsulated retinoic acid (CNE-RA) delivery system composed of the cationic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOTAP), retinoic acid, squalene as the oil phase, polysorbate 80 as surfactant, and sorbitan trioleate 85 as co-surfactant. Its physical and chemical properties were characterized using dynamic light scattering and a spectrophotometer. Immunization of mice with the mixture of antigen (ovalbumin, OVA) and CNE-RA significantly elevated the levels of anti-OVA secretory immunoglobulin A (sIgA) in vaginal lavage fluid and the small intestinal lavage fluid of mice compared with OVA alone. This protocol describes a detailed method for the preparation, characterization, and evaluation of the adjuvant effect of CNE-RA.


Assuntos
Adjuvantes Imunológicos , Imunização , Feminino , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Mucosa , Vacinação , Antígenos , Imunidade nas Mucosas , Tensoativos/farmacologia , Ovalbumina , Camundongos Endogâmicos BALB C
3.
Int J Antimicrob Agents ; 62(5): 106972, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741585

RESUMO

Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana
4.
Adv Healthc Mater ; 12(23): e2300085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37171889

RESUMO

Helicobacter pylori (H. pylori) colonizes the stomach epithelium of half the world's population and is responsible for various digestive diseases and even stomach cancer. Vaccine-mediated protection against H. pylori infection depends primarily on the specific mucosal and T-cell responses. In this study, the synthetic lipopeptide vaccines, Hp4 (Pam2 Cys modified UreB T-cell epitope) and Hp10 (Pam2 Cys modified CagA T/B cell combined epitope), not only induce the bone marrow derived dendritic cells (BMDCs) maturation by activating a variety of pattern-recognition receptors (PRRs) such as Toll-like receptor (TLR), Nod-like receptor (NLR), and retinoic acid-inducing gene (RIG) I-like receptor (RLR), and but also stimulate BMDCs to secret cytokines that have the potential to modulate T-cell activation and differentiation. Although intranasal immunization with Hp4 or Hp10 elicits robust epitope-specific T-cell responses in mice, only Hp10 confers protection against H. pylori infection, possibly due to the fact that Hp10 also induces substantial specific sIgA response at mucosal sites. Interestingly, Hp4 elevates the protective response against H. pylori infection of Hp10 when administrated in combination, characterized by better protective effect and enhanced specific T-cell and mucosal antibody responses. The results suggest that synthetic lipopeptide vaccines based on the epitopes derived from the protective antigens are promising candidates for protection against H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Helicobacter pylori/genética , Infecções por Helicobacter/prevenção & controle , Lipopeptídeos/farmacologia , Vacinas Bacterianas , Adjuvantes Imunológicos , Epitopos de Linfócito T , Vacinas Sintéticas , Camundongos Endogâmicos BALB C
5.
J Vis Exp ; (185)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938846

RESUMO

Biomimetic nanoparticles obtained from bacteria or viruses have attracted substantial interest in vaccine research and development. Outer membrane vesicles (OMVs) are mainly secreted by gram-negative bacteria during average growth, with a nano-sized diameter and self-adjuvant activity, which may be ideal for vaccine delivery. OMVs have functioned as a multifaceted delivery system for proteins, nucleic acids, and small molecules. To take full advantage of the biological characteristics of OMVs, bioengineered Escherichia coli-derived OMVs were utilized as a carrier and SARS-CoV-2 receptor-binding domain (RBD) as an antigen to construct a "Plug-and-Display" vaccine platform. The SpyCatcher (SC) and SpyTag (ST) domains in Streptococcus pyogenes were applied to conjugate OMVs and RBD. The Cytolysin A (ClyA) gene was translated with the SC gene as a fusion protein after plasmid transfection, leaving a reactive site on the surface of the OMVs. After mixing RBD-ST in a conventional buffer system overnight, covalent binding was formed between the OMVs and RBD. Thus, a multivalent-displaying OMV vaccine was achieved. By replacing with diverse antigens, the OMVs vaccine platform can efficiently display a variety of heterogeneous antigens, thereby potentially rapidly preventing infectious disease epidemics. This protocol describes a precise method for constructing the OMV vaccine platform, including production, purification, bioconjugation, and characterization.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Antígenos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , SARS-CoV-2
6.
Front Immunol ; 13: 833418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356002

RESUMO

As TLR2 agonists, several lipopeptides had been proved to be candidate vaccine adjuvants. In our previous study, lipopeptides mimicking N-terminal structures of the bacterial lipoproteins were also able to promote antigen-specific immune response. However, the structure-activity relationship of lipopeptides as TLR2 agonists is still unclear. Here, 23 synthetic lipopeptides with the same lipid moiety but different peptide sequences were synthesized, and their TLR2 activities in vitro and mucosal adjuvant effects to OVA were evaluated. LP1-14, LP1-30, LP1-34 and LP2-2 exhibited significantly lower cytotoxicity and stronger TLR2 activity compared with Pam2CSK4, the latter being one of the most potent TLR2 agonists. LP1-34 and LP2-2 assisted OVA to induce more profound specific IgG in sera or sIgA in BALF than Pam2CSK4. Furthermore, the possibility of LP1-34, LP2-2 and Pam2CSK4 as the mucosal adjuvant for the SARS-CoV-2 recombinant RBD (rRBD) was investigated. Intranasally immunized with rRBD plus either the novel lipopeptide or Pam2CSK4 significantly increased the levels of specific serum and respiratory mucosal IgG and IgA, while rRBD alone failed to induce specific immune response due to its low immunogenicity. The novel lipopeptides, especially LP2-2, significantly increased levels of rRBD-induced SARS-CoV-2 neutralizing antibody in sera, BALF and nasal wash. Finally, Support vector machine (SVM) results suggested that charged residues in lipopeptides might be beneficial to the agonist activity, while lipophilic residues might adversely affect the agonistic activity. Figuring out the relationship between peptide sequence in the lipopeptide and its TLR2 activity may lay the foundation for the rational design of novel lipopeptide adjuvant for COVID-19 vaccine.


Assuntos
COVID-19 , Lipopeptídeos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacinas contra COVID-19 , Humanos , Imunidade , Imunoglobulina G , Lipopeptídeos/farmacologia , SARS-CoV-2 , Receptor 2 Toll-Like
7.
Eur J Pharmacol ; 883: 173326, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598953

RESUMO

Since December 2019, the coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread throughout China as well as other countries. More than 8,700,000 confirmed COVID-19 cases have been recorded worldwide so far, with much more cases popping up overseas than those inside. As the initial epicenter in the world, China has been combating the epidemic for a relatively longer period and accumulated valuable experience in prevention and control of COVID-19. This article reviewed the clinical use, mechanism and efficacy of the clinically approved drugs recommended in the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (DTPNCP) released by National Health Commission of P.R.China, and the novel therapeutic agents now undergoing clinical trials approved by China National Medical Products Administration (NMPA) to evaluate experimental treatment for COVID-19. Reviewing the progress in drug development for the treatment against COVID-19 in China may provide insight into the epidemic control in other countries.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus/efeitos dos fármacos , COVID-19 , China/epidemiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
8.
Immunol Lett ; 223: 1-9, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311408

RESUMO

Toll-like receptors (TLRs) belong to a family of pattern recognition receptors (PRRs). It is well known that TLRs play an essential role in activating innate and adaptive immune responses. TLRs are involved in mediating inflammatory responses and maintaining epithelial barrier homeostasis, and they are highly likely to activate various signalling pathways during cancer chemotherapy. For a long time, much research focused on the immune modulating function of TLRs in cancer genesis, pathology and therapeutic strategies. However, recent reports have suggested that except for the innate and adaptive immune responses that they initiate, TLRs can signal to induce regulated cell death (RCD), which also plays an important role in the antitumor process. TLR agonists also have been investigated as cancer therapeutic agents under clinical evaluation. In this review, we focused on the mechanism of RCD induced by TLR signals and the important role that they play in anticancer therapy combined with recent experimental and clinical trial data to discuss the possibility of TLRs as promising targets for cancer therapy. TLRs represent triggers of regulated cell death and targets for cancer therapy. The molecular mechanisms of TLR-induced RCD and relationship between TLR-signalling pathways and cancer remain to be investigated by further studies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/terapia , Receptores Toll-Like/metabolismo , Animais , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Imunidade Inata , Terapia de Alvo Molecular , Neoplasias/imunologia , Morte Celular Regulada , Transdução de Sinais , Receptores Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...